Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
Mineral particles provide reactive sites for organic carbon (C) to bind in soil; this ‘mineral-associated organic matter’ (MAOM) may persist for centuries to millennia or cycle rapidly in minutes to days. The conditions and processes that influence short and long-term cycling of MAOM are poorly constrained. Soil moisture is one key control on organic matter cycling in soil, and projected shifts in moisture regimes towards more intense rainfall and prolonged drought under climate change may alter MAOM formation and cycling. Here, in a 3-week laboratory incubation study, we evaluated how two contrasting moisture regimes affected the formation and cycling of 13C-labeled MAOM from two mineralogically-distinct soil types. Repeated wet-dry cycling (between 3% and 60% of water-holding capacity) enhanced the formation of 13C-MAOM relative to constant moisture conditions. The two soil types differed in rates of MAOM formation and the sensitivity of newly-formed and pre-existing MAOM to subsequent priming in the presence of simulated exudates (glucose and/or oxalic acid). Wet-dry cycling enhanced the decomposition of newly-formed MAOM and it further accelerated the potential priming of pre-existing MAOM. Therefore, while repeated cycles between drought-like and “optimal” moisture conditions may promote the formation of MAOM, they may also undermine the stability of pre-existing MAOM and limit opportunities for new C inputs to enter more persistent forms.more » « less
-
Open dumping and burning of solid waste are widely practiced in underserved communities lacking access to solid waste management facilities; however, the generation of microplastics from these sites has been overlooked. We report elevated concentrations of microplastics (MPs) in soil of three solid waste open dump and burn sites: a single-family site in Tuttle, Oklahoma, USA, and two community-wide sites in Crow Agency and Lodge Grass, Montana, USA. We extracted, quantified, and characterized MPs from two soil depths (0-9 cm and 9-18 cm). The abundance of particles found at the three sites (35,000 to 69,200 particles kg-1 soil) equals or exceeds reported concentrations from currently understood sources of MPs including biosolids application and other agricultural practices. Attenuated total reflectance Fourier transformed infrared (ATR-FTIR) identified polyethylene as the dominant polymer across all sites (46.2%-84.8%). We also detected rayon (≤11.5%), polystyrene (up to 11.5%), polyethylene terephthalate (≤5.1), polyvinyl chloride (≤4.4%), polyester (≤3.1), and acrylic (≤2.2%). Burned MPs accounted for 76.3 to 96.9% of the MPs found in both community wide dumping sites. These results indicate that solid waste dumping and burning activities are a major source of thermally oxidized MPs for the surrounding terrestrial environment with potential to negatively affect underserved communities.more » « less
An official website of the United States government
